7 research outputs found

    Scheduling Dynamic OpenMP Applications over Multicore Architectures

    Get PDF
    International audienceApproaching the theoretical performance of hierarchical multicore machines requires a very careful distribution of threads and data among the underlying non-uniform architecture in order to minimize cache misses and NUMA penalties. While it is acknowledged that OpenMP can enhance the quality of thread scheduling on such architectures in a portable way, by transmitting precious information about the affinities between threads and data to the underlying runtime system, most OpenMP runtime systems are actually unable to efficiently support highly irregular, massively parallel applications on NUMA machines. In this paper, we present a thread scheduling policy suited to the execution of OpenMP programs featuring irregular and massive nested parallelism over hierarchical architectures. Our policy enforces a distribution of threads that maximizes the proximity of threads belonging to the same parallel section, and uses a NUMA-aware work stealing strategy when load balancing is needed. It has been developed as a plug-in to the ForestGOMP OpenMP platform. We demonstrate the efficiency of our approach with a highly irregular recursive OpenMP program resulting from the generic parallelization of a surface reconstruction application. We achieve a speedup of 14 on a 16-core machine with no application-level optimization

    Exploiting task-based parallelism in Bayesian Uncertainty Quantification

    No full text
    We introduce a task-parallel framework for non-intrusive Bayesian Uncertainty Quantification and Propagation of complex and computationally demanding physical models on massively parallel computing architectures. The framework incorporates Laplace asymptotic approximations and stochastic algorithms along with distributed numerical differentiation. Sampling is based on the Transitional Markov Chain Monte Carlo algorithm and its variants while the optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy. Exploitation of task-based parallelism is based on a platform-agnostic adaptive load balancing library that orchestrates scheduling of multiple physical model evaluations on computing platforms that range from multicore systems to hybrid GPU clusters. Experimental results using representative applications demonstrate the flexibility and excellent scalability of the proposed framework. © Springer-Verlag Berlin Heidelberg 2015

    Approximate Bayesian computation for granular and molecular dynamics simulations

    No full text
    The effective integration of models with data through Bayesian uncertainty quantification hinges on the formulation of a suitable likelihood function. In many cases such a likelihood may not be readily available or it may be difficult to compute. The Approximate Bayesian Computation (ABC) proposes the formulation of a likelihood function through the comparison between low dimensional summary statistics of the model predictions and corresponding statistics on the data. In this work we report a computationally efficient approach to the Bayesian updating of Molecular Dynamics (MD) models through ABC using a variant of the Subset Simulation method. We demonstrate that ABC can also be used for Bayesian updating of models with an explicitly defined likelihood function, and compare ABCSubSim implementation and effciency with the transitional Markov chain Monte Carlo (TMCMC). ABC-SubSim is then used in force-field identification of MD simulations. Furthermore, we examine the concept of relative entropy minimization for the calibration of force fields and exploit it within ABC. Using different approximate posterior formulations, we showcase that assuming Gaussian ensemble uctuations of molecular systems quantities of interest can potentially lead to erroneous parameter identification. © 2016 ACM

    Pi 4U: A high performance computing framework for Bayesian uncertainty quantification of complex models

    No full text
    We present Pi 4U,(1) an extensible framework, for non-intrusive Bayesian Uncertainty Quantification and Propagation (UQ+P) of complex and computationally demanding physical models, that can exploit massively parallel computer architectures. The framework incorporates Laplace asymptotic approximations as well as stochastic algorithms, along with distributed numerical differentiation and task-based parallelism for heterogeneous clusters. Sampling is based on the Transitional Markov Chain Monte Carlo (TMCMC) algorithm and its variants. The optimization tasks associated with the asymptotic approximations are treated via the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). A modified subset simulation method is used for posterior reliability measurements of rare events. The framework accommodates scheduling of multiple physical model evaluations based on an adaptive load balancing library and shows excellent scalability. In addition to the software framework, we also provide guidelines as to the applicability and efficiency of Bayesian tools when applied to computationally demanding physical models. Theoretical and computational developments are demonstrated with applications drawn from molecular dynamics, structural dynamics and granular flow. (C) 2014 Elsevier Inc. All rights reserved

    Bayesian uncertainty quantification and propagation for discrete element simulations of granular materials

    No full text
    Predictions in the behavior of granular materials using Discrete Element Methods (DEM) hinge on the employed interaction potentials. Here we introduce a data driven, Bayesian framework to quantify DEM predictions. Our approach relies on experimentally measured coefficients of restitution for single steel particle-wall collisions. The calibration data entail both tangential and normal coefficients of restitution, for varying impact angles and speeds of the bouncing particle. The parametric uncertainty in multiple Force-Displacement models is estimated using an enhanced Transitional Markov Chain Monte Carlo implemented efficiently on parallel computer architectures. In turn, the parametric model uncertainties are propagated to predict Quantities of Interest (QoI) for two testbed applications: silo discharge and vibration induced mass-segregation. This work demonstrates that the classical way of calibrating DEM potentials, through parameter optimization, is insufficient and it fails to provide robust predictions. The present Bayesian framework provides robust predictions for the behavior of granular materials using DEM simulations. Most importantly the results demonstrate the importance of including parametric and modeling uncertainties in the potentials employed in Discrete Element Methods. (C) 2014 Elsevier B.V. All rights reserved
    corecore